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Abstract—The arbitrariness of the boundary condition applied to the P-approximation is explored by

extending the conventional Marshak boundary condition to include an arbitrary constant. The influence

of the constant on the results of the P -approximation is investigated numerically for one- and multi-

dimensional radiative heat transfer problems. Based on these numerical investigations, optimized values

for the constant are recommended according to the wall emissivity of the radiating system. The accuracy

of the P,-approximation can be improved significantly when optimized values are employed in the bour.dary
condition.

1. INTRODUCTION

RADIATIVE heat transfer is the predominant energy
transfer mode in most industrial combustion systems
because such systems uvsually involve high tempera-
tures and large geometrical dimensions. Unfortun-
ately, radiative heat transfer is governed by a com-
plex integro-differential equation in the radiation inten-
sity which is extremely difficult to solve even for one-
dimensional problems. Exact solutions to the radiative
transfer equation exist only for some limited situations
[1] ; hence, approximate solution methods are of interest
for the purpose of modelling radiative heat transfer in
practical combustion systems. Qver the years, several
numerical methods have been developed to solve the
radiative transfer equation, such as the zone method,
the Monte Carlo method, flux models and the discrete
transfer method. However, each method suffers from
some shortcomings which restrict its use. Compre-
hensive discussions of these methods have been pre-
sented (see ref. [1], for example); therefore, it is not
necessary to repeat them here.

Recently, lower order spherical harmonics methods,
such as the P,- and the P;-approximations, have
received considerable research attention on account of
their simplicity, compatibility with the finite difference
modelling technique and capability of handling aniso-
tropic scattering [2, 3]. However, the Py-approximation
method suffers from the boundary condition ambi-
guity which has not been widely studied, although
attention has been drawn to it in the literature [3-5].

Two different schemes of boundary condition
approximation have been developed for application to
the spherical harmonics method in the work related to
neutron . transport theory, named Mark’s and
Marshak’s boundary conditions [4, 6]. It has been
pointed out that Mark’s boundary condition is prefer-
able for high order approximations (N > 3); however,
Marshak’s boundary condition gives better results
for lower order approximations, such as the P,- and
the Ps-approximations [4]. Therefore, Marshak’s
boundary condition has been widely used in the litera-
ture. The pronounced shortcoming of the P- and Py-
approximations when employing Marshak’s bound-
ary condition, as addressed by Ratzel and Howell
{7}, is to overpredict the surface heat transfer charac-
teristics.

The objective of this work is to improve the ac-
curacy of the Py-approximation by investigating
its boundary conditions. In order to simplify the
discussion, this paper focuses on the boundary con-
dition of the P,-approximation. However, it should
be pointed out that the underlying ideas are also appli-
cable to the P;-approximation. In the next section, the
formulation of the P,-approximation is given without
derivation. The arbitrariness of the boundary con-
dition of the P ,-approximation is demonstrated by
formulating a more general form of boundary con-
dition which contains an arbitrary constant. By study-
ing the effect of the value of the constant on the result
of the P,-approximation, optimized values of the
constant are recommended. It is shown in this work
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NOMENCLATURE
E,(x) third exponential integral T temperature [K]
1 radiation intensity [Wm™2sr™ '] x, y, z Cartesian coordinates [m].
I, zero moment of radiation intensity
(Wm~7
I first order moment of radiation intensity ~ Greek symbols
fWm™7 £ emissivity
I black-body radiation intensity ] polar angle [sr]; non-dimensional
Wm™2sr Y] black-body radiation intensity
{; direction cosines: ¢ ifi=1;nifi=2; K, absorption coefficient [m™~]
pifi=13 &,m, u direction cosines
L distance between two parallel plates Ty optical dimension
q net radiative heat flux [Wm™7] ¢ azimuthal angle [sr]
q* component of radiative heat flux in the Q solid angle {sr].
positive direction
q- component of radiative heat flux in the
negative direction Subscripts
g non-dimensional net radiative heat flux € exact solution
hY volumetric heat generation rate g gas
kWm™] w wall.

that the accuracy of the P,-approximation can be
improved significantly when the optimized values are
employed.

2. FORMULATION

2.1. Governing equation of the P -approximation

For an absorbing-emitting medium, under the
assumptions that the medium is grey and in local
thermodynamic equilibrium, the time-independent
radiative transfer equation in a three-dimensional
Cartesian coordinate system is given by

ol of al
5}54*5};'?4‘ P —K I+ 1, 0,(T) H

where £, 7 and p are direction cosines defined as
E=sinflcos¢, n=sindsingd, p=cosh. (2)

In the P,-approximation, the radiation intensity is
expanded in terms of its moments as

1
I(x,y,2,0,¢) = 3;;[10+3(I.é+12n+13u)] 3)
where I, and I, (i = 1, 2, 3) are the zero order moment

and the first order moments of the intensity defined
as

Iyx, y,2) = -[) ’ J: I(x, y,2,0,¢)sin@dbdgp (4)

I, 3.2) -«-«-Lh L LIx, y,2,0,¢)sin0d0dp  (5)

where [;is either &,  or u depending on i. For example,
if i=1, I, = ¢ Note that the first order moments,
I, are the net radiative heat fluxes. After performing

some standard derivations (see Menguc and Viskanta
[2]), the governing equation of the P,-approximation
can be obtained as

o, oy
ox?  dy?

o,

7 = 3(la—dnl).  (6)

If the volumetric heat generation rate S of the medium
is specified, the governing equation of the P,-approxi-
mation then takes the form

&ty 3o,
axt 9yt

0 3k, S. 0]

The net radiative heat fluxes, 7, are related to I,
through

1 o,

I, = RETr™ (8)
1 ai,

I, = BEPEE ®
1o,

YT T3 ar (10

The net radiative heat flux, g;, can also be written
as the difference between the forward and backward
components such that

4 =g —q. (1D
In the P -approximation, ¢; and ¢; are expressed as
g =i+ 3 (12)
g7 =3lo—3, (13)
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2.2. Marshak’s boundary condition

In most practical combustion systems, the wall sur-
faces can be assumed to be diffusively reflecting and
emitting. This means that the outgoing radiation
intensity at the boundary is isotropic, i.e. independent
of direction. The outgoing radiation intensity at such
a surface is obtained by considering radiative energy
conservation and can be written as

I, =awa(Tw)+(1—ew)%'L_2 L1dQ.  (14)

The exact boundary condition is expressed as

I=1,. (15)
Equation (14) is effectively equivalent to
‘Izi = swnlb(Tw)+(1 —-Ew)qt; (16)

where + corresponds to the surfaces at the positive
and negative directions, respectively. It should be
pointed out that substitution of the radiation intensity
distribution, equation (3), into the exact boundary
condition, equation (15), does not yield an applicable
boundary condition for the P -approximation since
the angular dependence of intensity still remains in
the expression. Marshak’s boundary condition for the
P-approximation is obtained by taking the integral
of the radiation intensity over the appropriate hemi-
sphere after first multiplying by the appropriate direc-
tion cosine such that

J 1,dQ = f 1.1,4Q.
Q=2x Q=2n

Substitution of equations (3) and (14) into equation
(17) leads to

a7n

I+

2(2—¢,)
—8*““'11 = 4T[Ib(Tw).

W

(18)

In fact, Marshak’s boundary condition, equation
(18), can also be obtained by substituting equations
(12) and (13) into equation (16). Therefore,
Marshak’s boundary condition ensures the conser-
vation of radiative energy at boundaries. Note that
I; are related to I, through equations (8)—(10).

2.3. Extensions of Marshak's boundary condition

Two schemes for modifying Marshak’s boundary
condition are presented in this section. The starting
point of the first scheme is the realization that the
procedure of achieving the boundary condition for the
P -approximation suffers from a certain ambiguity,
although it has not been addressed explicitly.

In applying any of the Py-approximation methods,
we encounter the difficulty that the radiation intensity
is represented by a truncated spherical harmonics
series, so that the correct boundary condition of equa-
tion (15) cannot be satisfied exactly. This can be well
understood since the governing equations of the Py-
approximation require relations between the moments
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of the intensity and the wall temperature as boundary
conditions ; however, the exact boundary condition is
given for the intensity itself. As a result, the exact
boundary condition, equation (15), cannot be used
directly as the working boundary condition for the
P,-approximation as mentioned above. Therefore, it
has to be concluded that any usable boundary con-
ditions for the Py-approximation are exact only in
an integral sense. The first scheme for extending
Marshak’s boundary condition is to replace
equation (17) by a general integral form of the exact
boundary condition such that

(19)

J Q) dQ = '[ 1,f(Q)dQ

where f()) is an arbitrary function of direction. It
is clear that equation (19) involves a certain arbi-
trariness due to the introduction of the arbitrary func-
tion. In order to obtain an analytical expression for
equation (19), it is assumed in this work that f(Q2) has
the form

SO ol

where #n is an arbitrary positive integer or zero. Then
the more general form of boundary condition for the
P -approximation will be derived from equation (21)

j I} dQ = J L17dQ.
Q=2n Q=2n

Equation (21) has physical significance for n =0, 1
and 2. n = 0, 1 and 2 correspond, respectively, to the
conditions that the radiation energy density, radiative
energy and radiation stress are exact at the boundary
considered. It is worth mentioning that equation (19)
or equation (21) can be readily applied to the P,-
approximation. Substitution of equations (3) and (14)
into equation (21) yields

0)

@n

3k+2(1—e,
It —i-}i)li =4nl(T.)  (22)
where k is a constant given as
j r+1do
Q=2n
k=g, 23)
f i71dQ
Q=2n
Employing the recurrence relation between

faze 171 dQ and q_,, 17 dQ [8], it turns out that k
is simply evaluated as

n+1
k= n+2

24

Note that the boundary condition of equation (22)
automatically includes the widely used Marshak
boundary condition when » takes the value of 1. It is
also noteworthy that equation (22) can be rewritten
as
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1 3k
by A el

jlot T hi=eth(T)+ (=) Gl T 30).

25
By comparing equation (25) with equation (16), it can
be seen that at boundaries having a positive normal
direction

g = o+ 3kl (26)
qi =il —1l, (27)
while at boundaries having a negative direction
g = ilo+31; (28)
g7 = slo—3kI,. 29)

These equations demonstrate that radiative energy is
not conserved at boundaries if z is not equal to 1. This
is not surprising because the condition imposed on
the radiation intensity by equation (21) is less strict
than that by equation (15).

The second scheme to modify Marshak’s boundary
condition is to extend the suggestion of Pomraning
and Foglesong [5]. Instead of using equations (12)
and (13), they suggest expressing the forward and
backward components of radiative heat flux at bound-
aries as

g = o+ (1=0)],
g = io—0l,

(30)
@31

where ¢ is an arbitrary constant. Note that equations
(30) and (31) ensure the conservation of radiative
energy at boundaries. Substitution of equations (30)
and (31) into equation (16) yields the other modified
boundary condition for the P -approximation

4—46,0
I+ =21 = dniy(T.).

W

32)

This generalized boundary also includes Marshak’s
boundary condition when ¢ is equal to 0.5. It should
be pointed out that this scheme of modification cannot
be easily applied to the P,-approximation. Moreover,
it can be expected that the variation of é will affect
the solution of the P,-approximation in a similar way
as that caused by altering the value of n. Therefore,
the relation between /, and J; at boundaries given
in equation (32) will not be used as the boundary
condition to obtain the solution of the P,-approxi-
mation in this work.

The effects of n on the P,-approximation solution
will be shown in the next section for some one-
and multi-dimensional problems by comparing the
numerical results of the P,-approximation with exact
solutions.

3. RESULTS

Numerical results of the P,-approximation reported
in this paper for multi-dimensional problems were
obtained by using the elliptic equation successive-
overrelaxation (SOR) iterative technique. All results
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to be shown were computed on the PRIME com-
puter at the University of Sheffield, U.K. Results
for a one-dimensional case were calculated based on
its analytical solution. The accuracy of the numerical
scheme for multi-dimensional problems was assessed
by comparing the results of the P,-approximation
obtained in this work with those available in the litera-
ture [7, 9]. For all cases examined, the numerical
results of this work are exactly the same as published
data when Marshak’s boundary condition is used.

3.1. One-dimensional planar media

Consider the radiative heat transfer between two
parallel, infinite, diffuse surfaces bounding an iso-
thermal, homogeneous, absorbing and emitting
medium (Fig. 1). The direction perpendicular to the
surfaces is chosen as the reference direction. The two
walls have different temperatures, 7,, and T,,, but
have the same emissivity, &,. For this problem the
exact solution of the non-dimensional radiative heat
transfer rate, non-dimensionalized by n/,(T,), to Wall
1 (see Fig. 1) can be readily written as [10]

0.(0) = 2C,E5(1) — C4 (33)
where
C, =

et + [26,(1 — &) E5(10)}02 — [6w + 26.(1 —£,) E5(10)]
1~ (1-2,)[2E5(z)]?

(34)
C, =

8w02+ [28“,(1 _8W)E3(‘[0)]91 - [8w+28w(l _gw)ES(‘CO)]
1—(1-¢,)[2E5(z0)]°

(35)
- Ih(Twl)
O =@ G0
_ Ib(Twl)
2= Ty (37
Ty = K,L (38)
Tw1 TO Tw2
Wall 1 X wali 2

T
Fig. 1. Parallel walls separated by an absorbing—emitting
medium.
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1
E;(%) =f exp (—x/t)tdr. (39)
0

E(x) is the third exponential integral. Tabulation of
E4(x) can be found in the book by Siegel and Howell
[11}.

In the P -approximation, the heat transfer rate to
Wall 1 is evaluated as

1 di,

4(0) = -2

3k, dx “0)

x=10

I, can be written analytically under the physical con-
ditions given in Fig. 1, using the boundary condition
of equation (22), such that

Iy = 4nly(T,) +nly(To)(a, exp (v/3K.x)
+azexp(—/3x,%) (41)

where

4[(02— 1)(1 + \/T§r>exp (—+/30)
—6,- 1)<1 - ér)exp(—%/gto):l

a, = @2)

<1+ §r>2—<1— \/T§r>2 exp(—2\/§ro)
4|:(9,—1)<1+4r>
—(92—1)<1— \/T§r>exp(—\/§10)]

a, = (43)

(1+ éry—(l - §r>2exp(—2\/§ro)

| _3k+2(-s,)

gw

44

Then the non-dimensional heat transfer rate to Wall
1, Q(0), can be calculated as
S

a0 3
Q(O)_TL'Ib(Tg)_ 3 (a,—a,).

45)

For given wall temperatures, wall emissivities and
medium temperature, the radiative heat transfer rate
to Wall 1 is a function of the optical dimension z,. It
is of interest to compare the heat transfer rates to Wall
1 predicted by the P -approximation with the exact
solutions when the optical dimension 7, tends to zero
and infinity.

Consider first the limit of 7, — 0. The exact solution
of equation (33) yields

lim 0.(0) =570 =0).  (46)

The P,-approximation prediction, equation (45),
results in
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3k4a(1—s,) P20

lim 0(0) = @7)
Equation (47) shows that the heat transfer rate to
Wall 1 predicted by the P,-approximation in the limit
of 1,— 0 is not equal to the exact solution unless
k takes the value of 2/3, i.e. n is equal to 1 as
k = n+1/n+2 or the two walls are at the same tem-
perature, i.e. 0, = 0,.

In the case that t, tends to infinity, the exact heat
transfer rate to Wall 1 is given as

lim Q.(0) = ¢,(1-6)). (48)
The P,-approximation, however, yields
3
o
lim Q(0)= (1-6)). (49

k+2(1 —
1+§3+( &)

W

Comparison of equation (49) with equation (48) indi-
cates that the P,-approximation prediction of the heat
transfer rate to Wall 1 in the optically thick limit is
not accurate unless & takes the following value:

(50)

It is worth noting that this ‘optimum’ k is dependent
on the wall emissivity ¢,. Correspondingly, the value
of n can be estimated from equation (50) for a given
wall emissivity using the relation of equation (24). As
the value of the wall emissivity ¢,, is between 0 and 1,
equation (50) reveals that the ‘optimum’ k satisfies

0.6667 < k < 0.7560. (51

The corresponding value of n is either 1 or 2, depend-
ing on the wall emissivity &,. If £, is smaller than 0.5,
it is recommended to use n = 1; however, if ¢, is
greater than 0.5, it is preferable to use n = 2. These
suggestions will be validated and complemented by
comparing the P,-approximation results of the heat
transfer rate to Wall 1 with the exact solution for
different wall emissivities numerically.

Numerical results of non-dimensional heat transfer
rate to Wall 1, Q(0), are plotted in Fig. 2 as a function
of optical dimension 7,. It can be seen from Fig. 2
that when # is not equal to 1 the P,-approximation
does not predict the correct heat transfer rate to Wall
1 in the optically thin limit as indicated by equations
(46) and (47). The results show that this discrepancy
decreases with decreasing wall emissivity. The P,-
approximation results in the limit of 7, — 0 are inde-
pendent of n if 6, is equal to 8, (see equation (47)). It
is clearly shown in Fig. 2 that the influence of n on
the P,-approximation results is indeed dependent on
the wall emissivity &,. For high wall emissivities,
&, > 0.5, the use of n = 2 yields a much more accurate
heat transfer rate to Wall 1 than the use of n = 1 (see
(a) and (b)). For intermediate wall emissivities, when
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a: emissivity=1.0

a2
W+——r—r—7——1
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4 d. emissivity=02
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F1G. 2. Comparisons of non-dimensional heat transfer rates to Wall 1 obtained by the P -approximation
using different boundary conditions with exact solutions for different wall emissivities: 6, = 0.2, 8, = 0.5.
(1) Exact solution; 2) P,,n=1;3) P,n=2;(4) P,,n=3.

&, & 0.5, then the use of » = 2 is still superior to that
of n = 1, especially at small and intermediate optical
dimensions (see (c)). For low wall emissivities, when
&y < 0.5, then it is preferable to use n=1, ie.
Marshak’s boundary condition (see (d)). Another
suggestion which may be inferred from Fig. 2 is that
for very high wall emissivities, ¢, = 0.7, it is better to
use n = 3 rather than n = 2 at intermediate optical
dimensions (see (a) and (b)). It should be pointed out
that the influence of » on the P -approximation results
becomes more pronounced as the optical dimension
increases.

3.2. Two-dimensional problems

For two-dimensional radiative heat transfer prob-
lems, two cases with different thermal conditions are
considered in Cartesian coordinates.

Firstly, consider an infinitely long square cavity
containing a medium of uniform temperature and
uniform absorption coefficient where all four wall sur-
faces are cold and black. Exact solutions for surface
heat transfer rates are available due to Lockwood
and Shah [12}. The P,-approximation resuits for non-
dimensional surface heat transfer rates are compared
with exact solutions in Figs. 3-5. In obtaining the

results of the P,-approximation numerically, various
grid schemes were tested, and it was found that the
results obtained using a finer grid differed relatively
little from the results using a coarser grid for small
and intermediate optical dimensions. However, this
difference became greater as the optical dimension
increased. All the numerical results of the P,-approxi-
mation reported for this problem were obtained
using a 20 x 20 uniform grid scheme. It was also found
that the computing time depends strongly on the
optical dimension. The CPU times required were 1, 5
and 13 s when the optical dimensions of the cavity
were 10, 1.0 and 0.1, respectively.

Figures 3-5 show the surface heat transfer rates of
the P,-approximation using different boundary con-
ditions for different optical dimensions. In these fig-
ures, n = 1 represents Marshak’s boundary condition.
Different values of n, such as 0, 2, 3 and 4, have been
used to calculate the P -approximation results. It was
found that n = 3 is the optimum boundary condition.
It is clear that the P,-approximation using Marshak’s
boundary condition of n = 1 overpredicts the surface
heat flux, especially for the large optical dimension
7o = 10, where the P,-approximation yields un-
realistic values of heat flux (greater than unity). How-
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F1G. 3. Influence of the boundary condition on the prediction
of the P,-approximation for the non-dimensional surface
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F1G. 4. Influence of the boundary condition on the prediction
of the P,-approximation for the non-dimensional surface
heat transfer rate: 1, = 1.0.
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Fi1G. 5. Influence of the boundary condition on the prediction
of the P,-approximation for the non-dimensional surface
heat transfer rate: 1, = 10.
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ever, if n = 3 is employed, the surface heat transfer
rates are improved significantly except for the opti-
cally thin case where it is believed that the differential
approximation loses its validity. In the optically thin
case (Fig. 3), the P -approximation cannot predict the
correct variation trend of the heat flux distribution. In
addition, the boundary conditions have only a slight
influence on the solution. For intermediate optical
dimensions (Fig. 4), the P,-approximation using the
boundary condition of n = 3 predicts accurate surface
heat flux in the region removed from the corner
region; however, it still overpredicts the heat flux in
the corner region. For the case of large optical dimen-
sion (Fig. 5), the P,-approximation when using n = 3
yields very accurate surface heat transfer rates, even
near the corner. Based on these findings, it can be
concluded that the boundary condition with n = 3 is
superior to Marshak’s boundary condition. However,
it is worth noting that the results of the P,-approxi-
mation for small and intermediate optical dimensions
cannot be further improved, due to the nature of
the differential approximation, by selecting different
values of n. However, the influence of n on the P,-
approximation increases with increasing optical
dimension, which has been observed in Fig. 2.

The second case has the same geometry as the last
one but has different thermal conditions. In this case,
the bottom wall is at a dimensionless temperature of
unity. The other three walls are cold. All the walls are
black and the medium is subject to a uniform heat
generation of zero, i.e. the medium is in radiative
equilibrium. The optical dimension of this cavity is
unity. For this problem, numerical results of the zone
method have been presented [7]. The results of the P,-
approximation using different boundary conditions
are compared with the zone method results in Figs. 6

0e

05

(=]
»

o
w

o
X3

Conterline Emissive Power

(=]
-

00 02 04 oe 0os 10
y/L

Fi1G. 6. Influence of the boundary condition on the prediction
of the P,-approximation for the non-dimensional centreline
emissive power distribution: 7, = 1.0,
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F1G. 7. Influence of the boundary condition on the prediction
of the P,-approximation for the non-dimensional hot surface
heat transfer rate: 1, = 1.0.

and 7. Numerical results of the P,-approximation
were obtained using a 10 x 10 uniform grid scheme.
Figure 6 shows the non-dimensional centreline emiss-
ive power distribution. The P,-approximation under-
estimates the emissive power near the hot surface and
overestimates the power near the cold surface. Note
that the use of the boundary condition » = 3 yields a
slightly worse centreline emissive power distribution
than the use of Marshak’s boundary condition. Figure
7 shows the non-dimensional heat transfer rate for the
hot surface. It is clearly shown that the boundary
condition of n =3 is much better than Marshak’s
boundary condition. Although the heat transfer rate
for the hot surface can be further improved by using
a greater #, it will give rise to further deterioration of
the centreline emissive power distribution.

3.3. Three-dimensional problems

Consider a radiative transfer problem in an ideal-
ized furnace subject to uniform heat generation. The
data assumed in the predictions are given in Table 1.

For this problem, the zone method results of
Menguc and Viskanta [2] are used as exact solutions
to study the influence of # on the P -approximation.
In performing the numerical calculations, the medium
was divided into 8 x 8 x 10 uniform control volumes.
The computing time required by the P,-approxi-
mation was only 7 s. Numerical calculations were
performed for the furnace having an optical dimen-

Table 1. Physical parameters of the idealized furnace

Medium S=50kWm™*
Xg=2m, y,=2m, zo=4m
Boundaries z=0, 7 =1200K, ¢, =0.8S5
z=12zy, T=400K, ¢,=0.7
others, T=900K, &,=07

F. Lwu et al.
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G0 01 02 03 04 05
x/zo
F1G. 8. Influence of the boundary condition on the prediction

of the P -approximation for temperature distributions at
three axial locations: x, = 1.0 m™', y/z, = 0.25.

sion (k,z,) of 1.0. The temperature distributions
obtained by the P,-approximation at three axial
locations of the furnace are compared with the pre-
dictions based on the zone method in Fig. 8. Near the
hot wall (z/z, = 0.1), the P,-approximation predicts
accurate temperature distributions. At the centre of
the furnace (z/z, = 0.5) and near the cold end wall
(z/zo = 0.9), the P,-approximation overpredicts the
medium temperatures by as much as 5%. It is worth
noting that predictions of temperature distributions
using different boundary conditions differ only
slightly from each other, especially at the centre of the
furnace.

The radiative heat fluxes at the hot and the cold end
walls are compared in Fig. 9 wit'1 those obtained from
the zone method. The P,-approximation, when using
Marshak’s boundary condition, overpredicts the heat
transfer rate at the hot end wall by as much as 15%;
however, this difference decreases to under 5% when
the boundary condition of n == 3 is used. It should be
pointed out that for this problem the P;-approximation,
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F1G. 9. Influence of the boundary condition on the prediction
of the P,-approximation for surface heat transfer rate at two
end walls: x, = 1.0 m™', y/z, = 0.25.

when using the boundary condition of n = 3, predicts
the surface heat fluxes as accurately as the P;-approxi-
mation of Menguc and Viskanta [2], although their
results are not plotted in the figure. However, the
temperature predictions of the P,-approximation are
slightly less accurate than the P;-approximation.

4. CONCLUSIONS

The influence of boundary condition on the pre-
dictions of the P,-approximation has been inves-
tigated for both one- and multi-dimensional radiative
heat transfer problems. It is found that the accuracy of
the P,-approximation can be improved significantly
if the optimized value of n is used in the boundary
condition. The effect of n on the results of the P,-
approximation becomes more pronounced as the
optical dimension of the radiating system considered
increases. Although the P,-approximation using the
boundary condition of n = 3 sometimes yields slightly
worse results for the medium emissive power or tem-
perature distributions for problems with specified
volumetric heat generation, it predicts the radiative
heat flux at boundaries much more accurately. More-
over, the prediction of emissive power is much less
sensitive to the boundary condition than the surface
heat flux.

Based on the numerical studies performed in this

2051

work, some recommendations for the choice of the
value of n can be made. For one-dimensional
problems, it is suggested that n =2 be used if the
wall emissivity of the system is high or intermediate ;
however, n =1 or Marshak’s boundary condition
should be employed for the P,-approximation if the
wall emissivity is low. For multi-dimensional prob-
lems, the P,-approximation when using n = 3 as the
boundary condition predicts much more accurate sur-
face heat transfer rates than the use of n = 1. It should
be noted that this recommendation for multi-dimen-
sional problems is applicable for high wall emiss-
ivities. No assessment has been made in this work for
low wall emissivities since exact solutions for such
cases do not exist in the literature. However, most wall
surfaces encountered in practical combustion systems
have emissivities of about 0.7 or higher.

Since the simple P,-approximation offers the advan-
tages of high computational efficiency and compati-
bility with the finite difference technique frequently
used in computational fluid dynamics, together
with the improved accuracy demonstrated in this
work, it is attractive for use in general prediction
procedures.
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SUR LA CONDITION LIMITE DE L’APPROXIMATION P, UTILISEE POUR
RESOUDRE L’EQUATION DE TRANSFERT RADIATIF

Résumé—L arbitraire de la condition limite appliquée a ’approximation P, est exploré en étendant la
condition limite conventionnelle de Marshak pour inclure une constante arbitraire. L’influence de la
constante sur les résultats de cette approximation est étudiée numériquement pour des problémes de
transfert radiatif 4 une ou plusieurs dimensions. A partir de cette étude, on recommande des valeurs
optimales de la constante en tenant compte de I’émissivité des parois. La précision de 'approximation peut
étre augmentée sensiblement quand des valeurs optimisées sont employées dans la condition limite.

DIE RANDBEDINGUNG BEI DER P,-APPROXIMATION ZUR LOSUNG DER
GLEICHUNG FUR STRAHLUNGSTRANSPORT

Zusammenfassung—Die Freiheit bei der Wahl der Randbedingung bei der P,-Approximation wird er-

forscht, indem die konventionelle Marshak-Randbedingung um eine beliebige Konstante erweitert wird.

Der EinfluB der Konstanten auf die Ergebnisse der P,-Approximation wird numerisch fiir ein- und

mehrdimensionale Probleme des Strahlungswirmetransports untersucht. Auf der Grundlage dieser nume-

rischen Untersuchungen werden Optimalwerte fiir die Konstante empfohlen entsprechend dem Emis-

sionsvermogen der Wand des strahlenden Systems. Die Genauigkeit der P,-Approximation kann signifikant
durch Anwendung optimierter Werte in der Randbedingung verbessert werden.

TPAHUYHOE YCJIOBHUE P,-AIIINPOKCUMALIMH, UCITOJB3YEMOE [Jist PEHIEHHUA
YPABHEHHA PAJUALIMOHHOI'O MEPEHOCA

Annoraums—I1ocpeACTBOM BBeAeHHA NPOH3BOJILHOM NOCTOAHHOM B OOLICIIPHHATOE IPAHHYHOE YCJIOBHE

Mapiuaka BCCleayIOTC BapHAHTHL FPAHAYHOTO YCJIOBMSA, HCHOJNb3yeMoro B P, -annpokcuMauun. Ysc-

JICHHO ONpelensieTCsi BINAHHKE 3TO# NOCTOSHHOM Ha pe3ybTaTsl P|-annopoKCHMANHH U1 OJHO- H MHO-

rOMeEpHBIX 3aJa¥ PpajHalMOHHOTO TemionepeHoca. Ha ocHOBE YHC/IEHHBIX  HCC/ICOBAHHMH

PEKOMEHAYIOTCH ONTHMH3HPOBAHHBIC 3HAYCHHA MOCTOAHHOM, COOTBETCTBYIOLINE SIMHCCHOHHOM croco6-

HOCTH CTeHKH H3jay4aiouieif cucreMbl. TouHOCTE P, -anmoporceMalui MOXeT GBTh CYIIECTBEHHO NOBbI-
1lI€Ha NIPM HCTIONB30BAHHH ONTHMM3UPOBAHHBIX 3HAYCHHH B I'PaHHYHOM YCJIOBHH.



