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Abstract-The arbitrariness of the boundary condition applied to the P,-approximation is explored by 
extending the conventional Marshak boundary condition to include an arbitrary constant. The influence 
of the constant on the results of the P,-approximation is investigated numerically for one- and multi- 
dimensional radiative heat transfer problems. Based on these numerical investigations, optimized values 
for the constant are recommended according to the wall emissivity of the radiating system. The accuracy 
of the Pi-approximation can be improved significantly when optimized values are employed in the boundary 

condition. 

1. INTRODUCTION 

RADIATIVE heat transfer is the predominant energy 
transfer mode in most industrial combustion systems 
because such systems usually involve high tempera- 
tures and large geometrical dimensions. Unfortun- 
ately, radiative heat transfer is governed by a com- 
plex integro-differential equation in the radiation inten- 
sity which is extremely difficult to solve even for one- 
dimensional problems. Exact solutions to the radiative 
transfer equation exist only for some limited situations 
[l] ; hence, approximate solution methods are of interest 
for the purpose of modelling radiative heat transfer in 
practical combustion systems. Over the years, several 
numerical methods have been developed to solve the 
radiative transfer equation, such as the zone method, 
the Monte Carlo method, &IX models and the discrete 
transfer method. However, each method suffers from 
some shortcomings which restrict its use. Compre- 
hensive discussions of these methods have been pre- 
sented (see ref. [l], for example) ; therefore, it is not 
necessary to repeat them here. 

Recently, lower order spherical harmonics methods, 
such as the P,- and the Pi-appro~mations, have 
received considerabie research attention on account of 
their simplicity, compatibility with the finite difference 
modelling technique and capability of handling aniso- 
tropic scattering [2, 31. However, the P,-approximation 
method suffers from the boundary condition ambi- 
guity which has not been widely studied, although 
attention has been drawn to it in the literature [3-51. 

Two different schemes of boundary condition 
approximation have been developed for application to 
the spherical harmonics method in the work related to 
neutron transport theory, named Mark’s and 
Marshak’s boundary conditions [4, 63, It has been 
pointed out that Mark’s boundary condition is prefer- 
able for high order approximations (N > 3); however, 
Marshak’s boundary condition gives better results 
for lower order approximations, such as the P,- and 
the P,-approximations [4]. Therefore, Marshak’s 
boundary condition has been widely used in the litera- 
ture. The pronounced shortcoming of the P,- and P3- 
approximations when employing Marshal& bound- 
ary condition, as addressed by Ratzel and Howell 
{7J, is to overpredict the surface heat transfer charac- 
teristics. 

The objective of this work is to improve the ac- 
curacy of the P,-approximation by investigating 
its boundary conditions. In order to simplify the 
discussion, this paper focuses on the boundary con- 
dition of the P,-approximation. However, it should 
be pointed out that the underlying ideas are also appli- 
cable to the Pi-approximation. In the next section, the 
fo~ulation of the P,-approximation is given without 
derivation. The arbitrariness of the boundary con- 
dition of the P,-approximation is demonstrated by 
formulating a more general form of boundary con- 
dition which contains an arbitrary constant. By study- 
ing the effect of the value of the constant on the result 
of the P,-approximation, optimized values of the 
constant are recommended. It is shown in this work 
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NOMENCLATURE 

E3(x) third exponential integral T temperature [K] 
I radiation intensity [W m- 2 sr- ‘1 x, y, z Cartesian coordinates [ml. 

1, zero moment of radiation intensity 

PVmF21 
I; first order moment of radiation intensity Greek symbols 

[W rnwZ] E emissivity 

& black-body radiation intensity @ polar angle [sr] ; non-~m~sional 
[Wm-2srr’] black-body radiation intensity 

ii direction cosines : C$ if i = 1 ; q if i = 2 ; Jb absorption coefficient [m- ‘1 
pifi=3 {,TJ, p direction cosines 

L distance between two parallel plates 70 optical dimension 

Y net radiative heat flux [W m- ‘1 4 azimuthal angle [sr] 

Y+ component of radiative heat flux in the R solid angle [sr]. 
positive direction 

4- component of radiative heat flux in the 
negative direction Subscripts 

e non-dimensional net radiative heat flux e exact solution 
S volumetric heat generation rate g gas 

[kWm-“1 W wall. 

that the accuracy of the P,-approximation can be 
improved significantly when the optimized values are 
employed. 

2. FORMU~T~ON 

2.1. Governing equation of the P ,-approximation 
For an absorbing-emitting medium, under the 

assumptions that the medium is grey and in local 
thermodynamic equilibrium, the time-independent 
radiative transfer equation in a three-dimensional 
Cartesian coordinate system is given by 

where l, rl and p are direction cosines defined as 

<=sinBcosd, q=sinesin#, p=cosO. (2) 

In the P,-approximation, the radiation intensity is 
expanded in terms of its moments as 

I(X,Y,Z,Q,~) =~~zo+3(z,~+z*rl+l,~~] (3) 

where IO and 1, (i = 1,2,3) are the zero order moment 
and the first order moments of the intensity defined 
as 

2n n 
I,(& Y9 2) = 

Jl 
1(x, y, z, 8, #J) sin 0 dO d4 (4) 

0 0 

2n rr 
I,(% y> 2) = 

ss 
IJ(x, y, z, B,4) sin 0 do d4 (5) 

0 0 

where 1, is either g, v or p depending on i. For example, 
if i = I, 1, = 4. Note that the first order moments, 
I,, are the net radiative heat fluxes. After performing 

some standard derivations (see Menguc and Viskanta 
[2]), the governing equation of the P,-approximation 
can be obtained as 

If the volumetric heat generation rate S of the medium 
is specified, the governing equation of the P,-approxi- 
mation then takes the form 

2 2 2 
$+al,+?$L3K,S. 

ay2 (7) i 

The net radiative heat fluxes, I,, are related to lo 
through 

I ar, 
b=-g~ 

il 

I az, 
I*= ____ 

36 ay 

The net radiative heat flux, qi, can also be written 
as the difference between the forward and backward 
components such that 

qi=q;t-q;. (11) 

In the P,-approximation, q: and q,: are expressed as 

q: = {Z, + fZ, 

qi- = ;r, - g. 

W) 

(131 
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2.2. Marshak’s boundary condition 
In most practical combustion systems, the wall sur- 

faces can be assumed to be diffusively reflecting and 
emitting. This means that the outgoing radiation 
intensity at the boundary is isotropic, i.e. independent 
of direction. The outgoing radiation intensity at such 
a surface is obtained by considering radiative energy 
conservation and can be written as 

Z, = swZ&)+(l-s,J; n=2nZiZdQ. 
I 

(14) 

The exact boundary condition is expressed as 

I= I,. 

Equation (14) is effectively equivalent to 

(15) 

q’ = E,7rzt,(Tw)+(1-&E,)q,T (16) 

where f corresponds to the surfaces at the positive 
and negative directions, respectively. It should be 
pointed out that substitution of the radiation intensity 
distribution, equation (3), into the exact boundary 
condition, equation (15), does not yield an applicable 
boundary condition for the P ,-approximation since 
the angular dependence of intensity still remains in 
the expression. Marshak’s boundary condition for the 
P,-approximation is obtained by taking the integral 
of the radiation intensity over the appropriate hemi- 
sphere after first multiplying by the appropriate direc- 
tion cosine such that 

(17) 

Substitution of equations (3) and (14) into equation 
(17) leads to 

z +2(2-s,) 
(j_ -----zi = 47cZ,(T,). 

s, 
(18) 

In fact, Marshak’s boundary condition, equation 
(18), can also be obtained by substituting equations 
(12) and (13) into equation (16). Therefore, 
Marshak’s boundary condition ensures the conser- 
vation of radiative energy at boundaries. Note that 
Z, are related to I0 through equations (8)-( 10). 

2.3. Extensions of MarshakS boundary condition 
Two schemes for modifying Marshak’s boundary 

condition are presented in this section. The starting 
point of the first scheme is the realization that the 
procedure of achieving the boundary condition for the 
P,-approximation suffers from a certain ambiguity, 
although it has not been addressed explicitly. 

In applying any of the P,-approximation methods, 
we encounter the difficulty that the radiation intensity 
is represented by a truncated spherical harmonics 
series, so that the correct boundary condition of equa- 
tion (15) cannot be satisfied exactly. This can be well 
understood since the governing equations of the PN- 
approximation require relations between the moments 

of the intensity and the wall temperature as boundary 
conditions ; however, the exact boundary condition is 
given for the intensity itself. As a result, the exact 
boundary condition, equation (IQ cannot be used 
directly as the working boundary condition for the 
P,-approximation as mentioned above. Therefore, it 
has to be concluded that any usable boundary con- 
ditions for the P,-approximation are exact only in 
an integral sense. The first scheme for extending 
Marshak’s boundary condition is to replace 
equation (17) by a general integral form of the exact 
boundary condition such that 

If(n) dQ = 
s 
n= Zn ZJF) dQ (19) 

where f(Q) is an arbitrary function of direction. It 
is clear that equation (19) involves a certain arbi- 
trariness due to the introduction of the arbitrary func- 
tion. In order to obtain an analytical expression for 
equation (19), it is assumed in this work thatf(Q) has 
the form 

f m x 1: (20) 

where n is an arbitrary positive integer or zero. Then 
the more general form of boundary condition for the 
P,-approximation will be derived from equation (21) 

Equation (21) has physical significance for n = 0, 1 
and 2. n = 0, 1 and 2 correspond, respectively, to the 
conditions that the radiation energy density, radiative 
energy and radiation stress are exact at the boundary 
considered. It is worth mentioning that equation (19) 
or equation (21) can be readily applied to the P3- 
approximation. Substitution of equations (3) and (14) 
into equation (21) yields 

Ill f 
3ki-2(1-c,) 

EW 
zi = 4KZb( T,) (22) 

where k is a constant given as 

1;” dR 

k= 
5 n=*n 

I 

(23) 
1; dR 

fl=*n 

Employing the recurrence relation between 
jn= Zn 1;’ ’ dQ and jnC2, 1: dR [8], it turns out that k 
is simply evaluated as 

k=s. 

Note that the boundary condition of equation (22) 
automatically includes the widely used Marshak 
boundary condition when n takes the value of 1. It is 
also noteworthy that equation (22) can be rewritten 
as 
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By comparing equation (25) with equation (16), it can 
be seen that at boundaries having a positive normal 
direction 

4; = :Z,+akz, (26) 

/Ji- = :Z” - L,Z, (27) 

while at boundaries having a negative direction 

to be shown were computed on the PRIME com- 
puter at the University of Sheffield, U.K. Results 
for a one-dimensional case were calculated based on 
its analytical solution. The accuracy of the numerical 
scheme for multi-dimensional problems was assessed 
by comparing the results of the P,-approximation 
obtained in this work with those available in the litera- 
ture [7, 91. For all cases examined, the numerical 
results of this work are exactly the same as published 
data when Marshak’s boundary condition is used. 

q: = go + :z, (28) 

q; = :I,-:kI,. (29) 

These equations demonstrate that radiative energy is 
not conserved at boundaries if n is not equal to 1. This 
is not surprising because the condition imposed on 
the radiation intensity by equation (21) is less strict 
than that by equation (15). 

The second scheme to modify Marshak’s boundary 
condition is to extend the suggestion of Pomraning 
and Foglesong [5]. Instead of using equations (12) 
and (13), they suggest expressing the forward and 
backward components of radiative heat flux at bound- 
aries as 

3.1. One-dimensional planar media 
Consider the radiative heat transfer between two 

parallel, infinite, diffuse surfaces bounding an iso- 
thermal, homogeneous, absorbing and emitting 
medium (Fig. 1). The direction perpendicular to the 
surfaces is chosen as the reference direction. The two 
walls have different temperatures, T,, and Tw2, but 
have the same emissivity, E,. For this problem the 
exact solution of the non-dimensional radiative heat 
transfer rate, non-dimensionalized by RZ,,( T,), to Wall 
1 (see Fig. 1) can be readily written as [lo] 

where 

q; = :I”+(1 -6)Z, (30) 

q,- = :I, - sz, (31) 

where 6 is an arbitrary constant. Note that equations 
(30) and (31) ensure the conservation of radiative 
energy at boundaries. Substitution of equations (30) 
and (31) into equation (16) yields the other modified 
boundary condition for the P,-approximation 

c, = 

&,~,+[2&,(~-&w)~3(70)le2-[&w+2&,(1--E,)~3(70)1 

1 -u -%)2P‘w0)12 
(34) 

c2 = 

qvQ2+[W1 -&,)E3(70)1B,-[&,+2&,(I -%vM~O)I 

1-U -kJ2PW0)12 
z f 4-4&,6 
“- ----z, = 4rcZ,(T,). (32) 

a, 

This generalized boundary also includes Marshak’s 
boundary condition when 6 is equal to 0.5. It should 
be pointed out that this scheme of modification cannot 
be easily applied to the P,-approximation. Moreover, 
it can be expected that the variation of 6 will affect 
the solution of the P,-approximation in a similar way 
as that caused by altering the value of n. Therefore, 
the relation between I, and Z, at boundaries given 
in equation (32) will not be used as the boundary 
condition to obtain the solution of the P,-approxi- 
mation in this work. 

The effects of n on the P,-approximation solution 
will be shown in the next section for some one- 
and multi-dimensional problems by comparing the 
numerical results of the P,-approximation with exact 
solutions. 

3. RESULTS 

Numerical results of the P,-approximation reported 
in this paper for multi-dimensional problems were 
obtained by using the elliptic equation successive- 
overrelaxation (SOR) iterative technique. All results 

T-‘--E 
FIG. 1. Parallel walls separated by an absorbing-emitting 

medium. 

Q,(O) = 2C*&(r,) - C, (33) 

Twz 

Wall 2 

(35) 

(36) 

(37) 

(38) 
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E,(x) = 

s 

exp (- x/t)t dt. (39) 
II 

E3(x) is the third exponential integral. Tabulation of 
E3(x) can be found in the book by Siegel and Howell 

[I Il. 
In the P,-approximation, the heat transfer rate to 

Wall 1 is evaluated as 

(40) 

I, can be written analytically under the physical con- 
ditions given in Fig. 1, using the boundary condition 
of equation (22) such that 

I, = 4nZ, (Tr) + al, (T,) (a, exp (J3rc.x) 

where 

+&exP(-&Lx)) (41) 

4[(8,-l)(l+$r)exp(-fir,) 

fi -(0,-l) l-3r exp(-2&J 
( > 1 

~‘=(~+~rY-(l-~rT_p(-2~~~~ (42) 

4[(0,-l)(l+$r) 

-(0,-l) 
( ) 

4 1-3r exp(-fir,) 1 
a2=(l+$rJ-(l-$r~exp(-2&0) (43) 

3k+2(1 -E,) 
r= (4.4) 

KV 

Then the non-dimensional heat transfer rate to Wall 
1, Q(O), can be calculated as 

Q(O) = q(0) = 
GU-g) 

(45) 

For given wall temperatures, wall emissivities and 
medium temperature, the radiative heat transfer rate 
to Wall 1 is a function of the optical dimension zO. It 
is of interest to compare the heat transfer rates to Wall 
1 predicted by the P,-approximation with the exact 
solutions when the optical dimension ~~ tends to zero 
and infinity. 

Consider first the limit of r,, + 0. The exact solution 
of equation (33) yields 

j@OQe@, =&@2-4). 
0 w 

The P,-approximation prediction, equation (45), 
results in 

lim Q(O) = 
To-+0 

3k+;;;_E,)(U2-01). (47) 

Equation (47) shows that the heat transfer rate to 
Wall 1 predicted by the P,-approximation in the limit 
of z. + 0 is not equal to the exact solution unless 
k takes the value of 2/3, i.e. n is equal to 1 as 
k = n + l/n + 2 or the two walls are at the same tem- 
perature, i.e. 8, = e,. 

In the case that r. tends to infinity, the exact heat 
transfer rate to Wall 1 is given as 

lim Qe(0) = &,(I -0,). 
T”_‘x (48) 

The P,-approximation, however, yields 

J3 
,‘@I~ Q(O) = 

4T 
0 ,+$3k+2(1-F,)(ls’)’ (49) 

1 
3 kv 

Comparison of equation (49) with equation (48) indi- 
cates that the P,-approximation prediction of the heat 
transfer rate to Wall 1 in the optically thick limit is 
not accurate unless k takes the following value : 

k=l+ 2_& E 

( > 3 3 3 w 

It is worth noting that this ‘optimum’ k is dependent 
on the wall emissivity E,. Correspondingly, the value 
of n can be estimated from equation (50) for a given 
wall emissivity using the relation of equation (24). As 
the value of the wall emissivity E, is between 0 and 1, 
equation (50) reveals that the ‘optimum’ k satisfies 

0.6667 < k < 0.7560. (51) 

The corresponding value of n is either 1 or 2, depend- 
ing on the wall emissivity E,. If E, is smaller than 0.5, 
it is recommended to use n = 1; however, if E, is 
greater than 0.5, it is preferable to use n = 2. These 
suggestions will be validated and complemented by 
comparing the P,-approximation results of the heat 
transfer rate to Wall 1 with the exact solution for 
different wall emissivities numerically. 

Numerical results of non-dimensional heat transfer 
rate to Wall 1, Q(O), are plotted in Fig. 2 as a function 
of optical dimension 70. It can be seen from Fig. 2 
that when n is not equal to 1 the P,-approximation 
does not predict the correct heat transfer rate to Wall 
1 in the optically thin limit as indicated by equations 
(46) and (47). The results show that this discrepancy 
decreases with decreasing wall emissivity. The PI- 

approximation results in the limit of r. + 0 are inde- 
pendent of n if 6, is equal to o2 (see equation (47)). It 
is clearly shown in Fig. 2 that the influence of II on 
the P,-approximation results is indeed dependent on 
the wall emissivity E,. For high wall emissivities, 
E, > 0.5, the use of n = 2 yields a much more accurate 
heat transfer rate to Wall 1 than the use of n = 1 (see 
(a) and (b)). For intermediate wall emissivities, when 



2048 F Llu et al 

a: emissivity=l.O 

oh- I 
03- 

s . 
0 

02- 

c: emissivity=0,5 

0.1 
i 

1 ao: . I . I . 1 . 

0 1 2 3 
G 

i 
b: emissivityrO.7 

0 1 2 3 4 
G 

FIG. 2. Comparisons of non-dimensional heat transfer rates to Wall 1 obtained by the P,-approximation 
using different boundary conditions with exact solutions for different wall emissivities : 0, = 0.2, Q2 = 0.5. 

(l)Exactsolution;(2)P,,n=1;(3)P,,n=2;(4)P,,n=3. 

E, z 0.5, then the use of n = 2 is still superior to that 
of n = 1, especially at small and intermediate optical 

dimensions (see (c)). For low wall emissivities, when 
E, < 0.5, then it is preferable to use n = 1, i.e. 
Marshak’s boundary condition (see (d)). Another 
suggestion which may be inferred from Fig. 2 is that 
for very high wall emissivities, E, 2 0.7, it is better to 
use n = 3 rather than n = 2 at intermediate optical 
dimensions (see (a) and (b)). It should be pointed out 
that the influence of n on the P,-approximation results 
becomes more pronounced as the optical dimension 
increases. 

3.2. Two-dimensional problems 
For two-dimensional radiative heat transfer prob- 

lems, two cases with different thermal conditions are 
considered in Cartesian coordinates. 

Firstly, consider an infinitely long square cavity 
containing a medium of uniform temperature and 
uniform absorption coefficient where all four wall sur- 
faces are cold and black. Exact solutions for surface 
heat transfer rates are available due to Lockwood 
and Shah [ 121. The P ,-approximation results for non- 
dimensional surface heat transfer rates are compared 
with exact solutions in Figs. 3-5. In obtaining the 

results of the P,-approximation numerically, various 
grid schemes were tested, and it was found that the 
results obtained using a finer grid differed relatively 
little from the results using a coarser grid for small 
and intermediate optical dimensions. However, this 
difference became greater as the optical dimension 
increased. All the numerical results of the P,-approxi- 
mation reported for this problem were obtained 
using a 20 x 20 uniform grid scheme. It was also found 
that the computing time depends strongly on the 
optical dimension. The CPU times required were 1, 5 
and 13 s when the optical dimensions of the cavity 
were 10, 1 .O and 0.1, respectively. 

Figures 3-5 show the surface heat transfer rates of 
the P,-approximation using different boundary con- 
ditions for different optical dimensions. In these fig- 
ures, n = 1 represents Marshak’s boundary condition. 
Different values of n, such as 0,2, 3 and 4, have been 
used to calculate the P,-approximation results. It was 
found that n = 3 is the optimum boundary condition. 
It is clear that the P,-approximation using Marshak’s 
boundary condition of II = 1 overpredicts the surface 
heat flux, especially for the large optical dimension 
t0 = 10, where the P,-approximation yields un- 
realistic values of heat flux (greater than unity). How- 
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Xl o-2 
11. r 

. 
u 7. - --cp1, n=l 

--+-p1, n=3 
6. - 

FIG. 3. Influence of the boundary condition on the prediction 
of the P,-approximation for the non-dimensional surface 

heat transfer rate : z,, = 0.1. 

0.7 r 

X/L 

FIG. 4. Influence of the boundary condition on the prediction 
of the ~,-approximation for the non-dimensional surface 

heat transfer rate : I,, = 1 .O. 

ever, if n = 3 is employed, the surface heat transfer 

rates are improved significantly except for the opti- 
cally thin case where it is believed that the differential 
approximation loses its validity. In the optically thin 
case (Fig. 31, the P,-approximation cannot predict the 
correct variation trend of the heat flux distribution. In 
addition, the boundary conditions have only a slight 
influence on the solution. For intermediate optical 
dimensions (Fig. 4), the P,-approximation using the 
boundary condition of n = 3 predicts accurate surface 
heat flux in the region removed from the corner 
region; however, it still overpredicts the heat flux in 
the corner region. For the case of large optical dimen- 
sion (Fig. S), the P,-approximation when using n = 3 
yields very accurate surface heat transfer rates, even 
near the corner. Based on these findings, it can be 
concluded that the boundary condition with n = 3 is 
superior to Marshak’s boundary condition. However, 
it is worth noting that the results of the P r-approxi- 
mation for small and intermediate optical dimensions 
cannot be further improved, due to the nature of 
the differential approximation, by selecting different 
values of n. However, the influence of n on the P,- 
approximation increases with increasing optical 
dimension, which has been observed in Fig. 2. 

The second case has the same geometry as the last 
one but has different thermal conditions. In this case, 
the bottom wall is at a dimensionless temperature of 
unity. The other three walls are cold. All the walls are 
black and the medium is subject to a uniform heat 
generation of zero, i.e. the medium is in radiative 
equilibrium. The optical dimension of this cavity is 
unity. For this problem, numerical results of the zone 
method have been presented [7]. The results of the P,- 
approximation using different boundary conditions 
are compared with the zone method results in Figs. 6 

-Pi, n=f 
-Pl, n=3 

X/L 

FIG. 5. Influence of the boundary condition on the prediction FIG. 6. Influence of the boundary condition on the prediction 
of the P,-approximation for the non-dimensional surface of the P,-approximation for the non-dimensional centreline 

heat transfer rate : r. = IO. emissive power distribution : to = I .O. 

10 
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0.7 1 1 I L 1 1 
0.0 0.1 02 0.3 0.4 05 

x/L 

FIG. 7. Influence of the boundary condition on the prediction 
of the P ,-approximation for the non-dimensional hot surface 

heat transfer rate : T,, = 1 .O. 

and 7. Numerical results of the P,-approximation 
were obtained using a 10 x 10 uniform grid scheme. 

Figure 6 shows the non-dimensional centreline emiss- 
ive power distribution. The P,-approximation under- 

estimates the emissive power near the hot surface and 
overestimates the power near the cold surface. Note 
that the use of the boundary condition n = 3 yields a 
slightly worse centreline emissive power distribution 
than the use of Marshak’s boundary condition. Figure 
7 shows the non-dimensional heat transfer rate for the 

hot surface. It is clearly shown that the boundary 

condition of n = 3 is much better than Marshak’s 
boundary condition. Although the heat transfer rate 

for the hot surface can be further improved by using 
a greater n, it will give rise to further deterioration of 

the centreline emissive power distribution. 

3.3. Three-dimensional problems 
Consider a radiative transfer problem in an ideal- 

ized furnace subject to uniform heat generation. The 
data assumed in the predictions are given in Table 1. 

For this problem, the zone method results of 
Menguc and Viskanta [2] are used as exact solutions 
to study the influence of n on the P,-approximation. 
In performing the numerical calculations, the medium 
was divided into 8 x 8 x 10 uniform control volumes. 
The computing time required by the P,-approxi- 
mation was only 7 s. Numerical calculations were 
performed for the furnace having an optical dimen- 

z I zo -0.9 

I . 1 

0.0 0.’ cl2 0.3 0.4 0.5 

xl20 

FIG. 8. Influence of the boundary condition on the prediction 
of the P,-approximation for temperature distributions at 

three axial locations : K, = 1 .O m- ‘, r/z0 = 0.25. 

sion (K%z,,) of 1.0. The temperature distributions 
obtained by the P,-approximation at three axial 

locations of the furnace are compared with the pre- 
dictions based on the zone method in Fig. 8. Near the 
hot wall (z/z0 = O.l), the P,-approximation predicts 
accurate temperature distributions. At the centre of 
the furnace (z/z,, = 0.5) and near the cold end wall 
(z/z, = 0.9) the P,-approximation overpredicts the 
medium temperatures by as much as 5%. It is worth 
noting that predictions of temperature distributions 
using different boundary conditions differ only 
slightly from each other, especially at the centre of the 
furnace. 

Table 1. Physical parameters of the idealized furnace 

Medium S=5.0kWm-’ 
xg = 2m, ~,,=2m, -,=4m 

Boundaries z = 0, T = 1200K, E, = 0.85 
z=z~, T=400K, E,=0.7 
others, 7’=900K, E,=0.7 

The radiative heat fluxes at the hot and the cold end 
walls are compared in Fig. 9 witlr those obtained from 
the zone method. The P,-approximation, when using 
Marshak’s boundary condition, overpredicts the heat 
transfer rate at the hot end wall by as much as 15% ; 
however, this difference decreases to under 5% when 
the boundary condition of n = 3 is used. It should be 
pointed out that for this problem the P,-approximation, 
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FIG. 9. Influence of the boundary condition on the prediction 
of the P,-approximation for surface heat transfer rate at two 

end walls : K, = 1 .O m- ‘, y/z,, = 0.25. 

when using the boundary condition of n = 3, predicts 
the surface heat fluxes as accurately as the P,-approxi- 
mation of Menguc and Viskanta [2], although their 
results are not plotted in the figure. However, the 
temperature predictions of the P,-approximation are 
slightly less accurate than the P,-approximation. 

4. CONCLUSIONS 

The influence of boundary condition on the pre- 
dictions of the P,-approximation has been inves- 
tigated for both one- and multi-dimensional radiative 
heat transfer problems. It is found that the accuracy of 
the P ,-approximation can be improved significantly 
if the optimized value of n is used in the boundary 
condition. The effect of n on the results of the P,- 

approximation becomes more pronounced as the 
optical dimension of the radiating system considered 
increases. Although the P,-approximation using the 
boundary condition of n = 3 sometimes yields slightly 
worse results for the medium emissive power or tem- 
perature distributions for problems with specified 
volumetric heat generation, it predicts the radiative 
heat flux at boundaries much more accurately. More- 
over, the prediction of emissive power is much less 
sensitive to the boundary condition than the surface 
heat flux. 

Based on the numerical studies performed in this 

work, some recommendations for the choice of the 
value of n can be made. For one-dimensional 
problems, it is suggested that n = 2 be used if the 
wall emissivity of the system is high or intermediate ; 
however, n = 1 or Marshak’s boundary condition 
should be employed for the P,-approximation if the 
wall emissivity is low. For multi-dimensional prob- 
lems, the P,-approximation when using n = 3 as the 
boundary condition predicts much more accurate sur- 
face heat transfer rates than the use of n = 1. It should 
be noted that this recommendation for multi-dimen- 
sional problems is applicable for high wall emiss- 
ivities. No assessment has been made in this work for 
low wall emissivities since exact solutions for such 
cases do not exist in the literature. However, most wall 
surfaces encountered in practical combustion systems 
have emissivities of about 0.7 or higher. 

Since the simple P,-approximation offers the advan- 
tages of high computational efficiency and compati- 
bility with the finite difference technique frequently 
used in computational fluid dynamics, together 
with the improved accuracy demonstrated in this 
work, it is attractive for use in general prediction 
procedures. 
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SUR LA CONDITION LIMITE DE L’APPROXIMATION P, UTILISEE POUR 
RESOUDRE L’EQUATION DE TRANSFERT RADIATIF 

R&rm&L’arbitraire de la condition limite appliquee a l’approximation P, est explore en Btendant la 
condition limite conventionnelle de Marshak pour inclure une constante arbitraire. L’influence de la 
constante sur les rbsultats de cette approximation est btudiee numeriquement pour des problemes de 
transfert radiatif a une ou plusieurs dimensions. A partir de cette etude, on recommande des valeurs 
optimales de la constante en tenant compte de l’emissivite des parois. La precision de l’approximation peut 

&tre augment&e sensiblement quand des valeurs optimisees sont employees dans la condition limite. 

DIE RANDBEDINGUNG BE1 DER P,-APPROXIMATION ZUR LOSUNG DER 
GLEICHUNG FUR STRAHLUNGSTRANSPORT 

Znsammenfaasung-Die Freiheit bei der Wahl der Randbedingung bei der P,-Approximation wird er- 
forscht, indem die konventionelle Marshak-Randbedingung urn eine beliebige Konstante erweitert wird. 
Der EinfluB der Konstanten auf die Ergebnisse der P,-Approximation wird numerisch fiir ein- und 
mehrdimensionale Probleme des Strahlungswlrmetransports untersucht. Auf der Grundlage dieser nume- 
rischen Untersuchungen werden Optimalwerte fiir die Konstante empfohlen entsprechend dem Emis- 
sionsvermiigen der Wand des strahlenden Systems. Die Genauigkeit der Pi-Approximation kann signifikant 

durch Anwendung optimierter Werte in der Randbedingung verbessert werden. 

FPAHMqHOE YCJIOBHE P,-AI-II-IPOKCMMAI@IM, HCI’IOJIb3YEMOE &lDI PEIIIEHMII 
YPABHEHHR PAJ_IAAHMOHHOI-0 I-IEPEHOCA 

Atnwrrup~--~~~pe~~r~~~ BBeneHHR npOH3BoAbHoii IIOCTOKHHO~ B o6luenpaHnToe rpaWWoe ycnoswe 
Mapmara EiCCJIeAytoTCs BapHiucTbl I'paliEi'lHO~O YCAOBHZ?, HCtIOJIb!JyeMOrO B P,-alllI~KCHM~H. qHC- 

JleHHOOrI~AeJlfleTCK BJlHRHHe 3TOk~~OKHHOiiHa~3~AbTaTbI~1-a~~OpOLCHMalUIH~~OAHO-KMHO- 

roMepHbrx 3aAas paAHaWOHHOr0 TelIJlOllepeHOC& Ha OCHOBe 'iHCJleHHblX HCZJIeAOBaHHHti 

~KOMeHA,'IOTC,l OETHMH3HpOBaHHbJe 3Ha'leHtiR llOCTORHHOii,COOTBCTCTB)'lOUlHe 3MHCCHOHHOii cnocoB 
HOCT,, CTeHKH H3JIySUOIUefi CHCTCMbLTO'IHOCTb PI-alIlIO~ITHMaUHEl MOXeT6blTbCyIIWTB‘ZHHO I'IOBbI- 

llIeHa~p~HCnOAb3OBaHHHOnTHMH3HpOBaHHblX3Ha~eHH~BrpaHH~HOMYCAOBHW. 


